Heritage High School
Mr. Pardi
pardir@luhsd.net
ET103

Course Title:

AP Computer Science
Grade Level: 10-12

Course Length: Year Course

Prerequisite(s): Algebra I, Computer Programming recommended

Credits: 10

Letter Grade: Receive an extra grade point for grades A-C.

Grad Requirements: Fulfills elective Credits.

Standards: Meets the Career Technical Education Model Curriculum Standards – Information and Communication Technologies Industry Sector - Software and Systems Development Pathway adopted by the California State Board of Education May 2005. (Currently under revision)

Course Description: The AP Computer Science course is considered a college level introductory course in computer science. A large part of the course is built around the development of computer programs or parts of programs that correctly solve a given problem. The course also emphasizes the design issues that make programs understandable, adaptable, and, when appropriate, reusable. At the same time, the development of useful computer programs and program modules is used as a context for introducing other important concepts in computer science, including the development and analysis of algorithms, the development and use of fundamental data structures, and the study of standard algorithms and typical applications. The AP Computer Science course utilizes Java.

Course Goals:

Students should be able to:

• design and implement solutions to problems by writing, running, and debugging

computer programs.

• use and implement commonly used algorithms and data structures.

• develop and select appropriate algorithms and data structures to solve problems.

• code fluently in an object-oriented paradigm using the programming language

Java. Students are expected to be familiar with and be able to use standard Java

library classes from the AP Java subset.

• read and understand a large program consisting of several classes and interacting

objects. Students should be able to read and understand a description of the

design and development process leading to such a program. (An example of such

a program is the AP Computer Science Case Studies.)

• recognize the ethical and social implications of computer use.

Grading Policies:

Homework

10%

Programming Exercises

10%

Programming Projects

10%

Assessments

70%
Course Content:

I. Object-Oriented Program Design

A. Program design

1. Read and understand a problem description, purpose, and goals.

2. Apply data abstraction and encapsulation.

3. Read and understand class specifications and relationships among the classes

(“is-a,” “has-a” relationships).

4. Understand and implement a given class hierarchy.

5. Identify reusable components from existing code using classes and class

libraries.

B. Class design

1. Design and implement a class.

2. Choose appropriate data representation and algorithms.

3. Apply functional decomposition.

4. Extend a given class using inheritance.

II. Program Implementation

A. Implementation techniques

1. Methodology

a. Object-oriented development

b. Top-down development

c. Encapsulation and information hiding

d. Procedural abstraction

B. Programming constructs

1. Primitive types vs. objects

2. Declaration

a. Constant declarations

b. Variable declarations

c. Class declarations

d. Interface declarations

e. Method declarations

f. Parameter declarations

3. Console output (System.out.print/println)

4. Control

a. Methods

b. Sequential

c. Conditional

d. Iteration

e. Understand and evaluate recursive methods

C. Java library classes (included in the AP Java subset)

III. Program Analysis

A. Testing

1. Test classes and libraries in isolation.

2. Identify boundary cases and generate appropriate test data.

3. Perform integration testing.

B. Debugging

1. Categorize errors: compile-time, run-time, logic.

2. Identify and correct errors.

3. Employ techniques such as using a debugger, adding extra output statements,

or hand-tracing code.

C. Understand and modify existing code

D. Extend existing code using inheritance

E. Understand error handling

1. Understand runtime exceptions.

F. Reason about programs

1. Pre- and post-conditions

2. Assertions

G. Analysis of algorithms

1. Informal comparisons of running times

2. Exact calculation of statement execution counts

H. Numerical representations and limits

1. Representations of numbers in different bases

2. Limitations of finite representations (e.g., integer bounds, imprecision of

floating-point representations, and round-off error)

IV. Standard Data Structures

A. Simple data types (int, boolean, double)

B. Classes

C. Lists

D. Arrays

V. Standard Algorithms

A. Operations on data structures previously listed

1. Traversals

2. Insertions

3. Deletions

B. Searching

1. Sequential

2. Binary

C. Sorting

1. Selection

2. Insertion

3. Mergesort

VI. Computing in Context

A. System reliability

B. Privacy

C. Legal issues and intellectual property

D. Social and ethical ramifications of computer use

